The Role of the Administrator in Instructional Technology Policy

Philip T.K. Daniel

Jason P. Nance

Follow this and additional works at: https://digitalcommons.law.byu.edu/elj

Part of the Educational Administration and Supervision Commons, and the Science and Technology Law Commons

Recommended Citation

Available at: https://digitalcommons.law.byu.edu/elj/vol2002/iss2/2

This Article is brought to you for free and open access by BYU Law Digital Commons. It has been accepted for inclusion in Brigham Young University Education and Law Journal by an authorized editor of BYU Law Digital Commons. For more information, please contact hunterlawlibrary@byu.edu.
THE ROLE OF THE ADMINISTRATOR IN INSTRUCTIONAL TECHNOLOGY POLICY

Philip T.K. Daniel* & Jason P. Nance**

I. INTRODUCTION

In response to national and state reform movements, and in an attempt to strengthen preparation standards for teachers and students, accreditation boards have prepared performance indicators in the area of technology. Such standards call for the full integration of technology in school curricula, formal coursework and professional development workshops for teachers, and an understanding on the part of teachers and students alike as to the legal and ethical issues surrounding the use of technology. The thesis of this research is that it is essential that school administrators be involved in all levels of planning and integrating technology into school curricula since it is they who will be ultimately responsible for implementing new technology programs in schools.

The process of preparing technology performance indicators follows the usual paradigm in American education. The legislature, at both national and state levels, establishes the law and sets policy. State boards of education prepare guidelines and specifications for the implementation of policy. In the area of technology, information is provided by commercial organizations such as the International Society for Technology in Education (ISTE), which has created the National Educational Technology Standards (NETS) as a foundation for teacher understanding of educational technology.1 Recently, the ISTE also

* Philip T.K. Daniel is a Professor of Education and adjunct professor of Law at The Ohio State University. He received his B.S. from Cheyney University of Pennsylvania, his M.S. and Ed.D. from the University of Illinois, and a J.D. from Northern Illinois University.

**Jason P. Nance received a B.A. from Brigham Young University in history teaching and an M.A. in Educational Administration at The Ohio State University. He is currently a doctoral candidate in Educational Administration at The Ohio State University.
created the Technology Standards for School Administrators (TSSA). Administrators at all levels are expected to comply with the governmental directives, based on the influence of commercial organizations, and to implement these policies. Finally, researchers in colleges and universities review and evaluate the success of the policies and report these back to the policy makers.

According to guidelines promulgated by ISTE and other groups, administrators, particularly school building principals, will be held accountable for, among other things, (1) creating and implementing a technology curricula; (2) ensuring that teachers and students have the opportunity to obtain skills in technology; (3) communicating to parents the opportunities available to students in this area; (4) creating a teacher-evaluation instrument that assesses teacher proficiency in integrating technology into the curriculum; and (5) serving as the chief recruiter in attracting teachers with technological skills. Failing to meet these responsibilities could subject administrative personnel to charges of incompetency and insubordination, and administrative personnel may also face nonrenewal of contract or suspension. The risk of incurring such professional sanctions will be minimized if administrators are included in the entire policy-making process of technology implementation. Administrators should be involved in evaluating potential rules and guidelines at every decision-making level.

II. THE DRIVE TOWARD TECHNOLOGY: A HISTORICAL OVERVIEW OF TECHNOLOGY IN SCHOOLS

The drive toward implementing technology into school curricula is a relatively recent, but by no means new, phenomenon. In 1981, the Reagan administration, through the U.S. Department of Education, appointed the National Commission on Excellence in Education. The Commission authored a report

3. TSSA Collaborative, supra n. 2.
entitled *A Nation at Risk*, a scathing polemic of America’s educational system. The report declared, “[o]ur Nation is at Risk . . . the educational foundations of our society are presently being eroded by a rising tide of mediocrity If an unfriendly power had attempted to impose on America the mediocre educational performance that exists today, we might have viewed it as an act of war.” The Commission considered technology to be an integral part of educational reform; as such, educators were advised to ensure that all high school graduates be trained in the use of computers for “personal and work-related purposes.”

The government responded to the report by formulating several programs. Current programs include Goals 2000, the Educate America Act, and the Improving America’s Schools Act of 1994. Together, these federal acts stand for the principle that students can meet high academic standards, particularly in the area of technology. In 1996, as a response to earlier research and experimentation, the U.S. Department of Education released a plan to integrate technology into the public school system. Termed *Getting America’s Students Ready for the 21st Century: Meeting the Technology Literacy Challenge*, the plan sought to present “a far-reaching vision for the effective use of technology in elementary and secondary education to help the next generation of school children to be better educated and better prepared for the evolving demands of the new American economy.” Between 1995 and 2000, the federal government allocated over eight billion dollars to the states to purchase technological equipment for schools and to fund educational technology programs. That initiative, released through the

5. Id. at 5.
6. Id. at 25 (The entire recommendation included: “The teaching of computer science in high school should equip students to: (a) understand the computer as an information, computation, and communication device; (b) use the computer in the study of the Basics and for personal and work-related purposes; and (c) understand the world of computers, electronics, and related technologies.”).
8. 20 U.S.C. §§ 6301, 8962(6.6(a)) (West 2000).
National Educational Technology Plan, provided the nation with five technology goals:

1. All students and teachers will have access to information technology in their schools.
2. All teachers will use technology effectively to help students achieve high academic standards.
3. All students will learn technology and information literacy skills.
4. Research and evaluation will improve the next generation of technology applications for teaching and learning.
5. Digital content and networked applications will transform teaching and learning.\(^\text{11}\)

III. STATE INITIATIVES

This cascade of federally-sponsored educational reform has been quickly absorbed by state governments and almost all have implemented programs in school technology for K-12 education. Four general trends have emerged from state statutes: (1) nearly every state made public school access to technology a priority; (2) to support public school technology access, states have created state technology commissions, councils, offices, or departments; (3) states have placed emphasis on teacher technology training; and (4) in an effort to guarantee teacher competence in technology, many states require teacher certification or licensure.

The first statutory trend is not surprising; every state except Alaska has enacted legislation that enables public schools to gain access to technology.\(^\text{12}\) For example, the Alabama Legis-

\(^{11}\) U.S. Dept. of Educ., supra n. 9. See also U.S. Dept. of Educ., No Child Left Behind: Enhancing Education through Technology <http://www.ed.gov/office/nclb/partx.html> (accessed Apr. 27, 2001) (technology push in schools continues as a national priority); Lowell Rose and Alex Gallup, The 32nd Annual Phi Delta Kappa/Gallup Poll Of the Public's Attitudes Toward the Public Schools, Phi Delta Kappan 54 (Sept. 2000) (The 2000 Phi Delta Kappa/Gallup Poll reveals that the majority of taxpayers believe technology is an important part of public education. The poll claims that 82% of adults polled believed that public schools should "invest more in computer technology for instructional purposes.").

\(^{12}\) To date, Alaska has only one statute dealing with education and technology, and this statute is only tangentially related to the topics discussed in this paper. See Alaska Stat. § 14.20.680 (LEXIS L. Publg. 2000) ("A school district or regional educational attendance area shall train each teacher, administrator, counselor, and specialist on the needs of individual students who have alcohol or drug related disabilities. The training must utilize the best available educational technology and include an overview of medical and psy-
lature seeks to "establish standards and coordinate services and infrastructure. . . [to provide] the children of Alabama citizens access to technology in the public schools." 13 The Delaware Legislature created the "Educational Technology Account" to "provide computer and telecommunications technology to Delaware's classrooms." 14 The Arkansas Legislature states "its intent and commitment to use every means available to obtain and utilize to the fullest extent computer technology in the instructional process in the public schools of this state." 15 The District of Columbia established the 21 st Century Public School Information Technology Program. This program provides "grants to all teachers [to] purchase . . . personal computer equipment, programs, or updates." 16 This trend among state and local governments is not surprising given that the federal

16. D.C. Code Ann. § 31-2521 (2000). See also Haw. Rev. Stat. Ann. § 36-32 (LEXIS L. Publg. 2000) (reveals that the Hawaiian Legislature created the state educational facilities improvement special fund that "shall be used solely to plan, design, acquire lands for and to construct public school facilities and to provide equipment and technology infrastructure to improve public schools."); Idaho Code § 33-4806 (2000) (states that the Idaho Legislature "established the public school technology grant program, which shall make available grants for schools to provide Idaho classrooms . . . with the equipment and resources necessary to integrate information age technology with instruction."); 105 Ill. Comp. Stat. § 5/2-3.117a (2000) (indicates that the Illinois Legislature established a School Technology Revolving Loan Program "for the purpose of making the financing of school technology hardware improvements affordable."); 105 Ill. Comp. Stat. § 5/2-3.117 (2000) (states, "The State Board of Education is authorized to provide technology-based learning resources, including matching grants, to school districts to improve educational opportunities and student achievement throughout the State. School districts may use grants for technology-related investments, including computer hardware, software, optical media networks, and related wiring, to educate staff to use that equipment in a learning context, and for other items defined under rules adopted by the State Board of Education."); Mo. Rev. Stat. § 170.254 (1999) ("the state board of education shall make grants to school districts for the acquisition of computers, data transmission lines, networking hardware and software, science and mathematics laboratory equipment, and such other equipment to promote the use of computers and telecommunications technology."); Ohio Rev. Code Ann. § 3301.80 (West 2000) (indicates that the Ohio Legislature created the Ohio SchoolNet commission to "administer programs to provide financial and other assistance to school districts and other educational institutions for the acquisition and utilization of educational technology."); Or. Rev. Stat. § 327.700 (1999) (Oregon created state education lottery bonds "for the purpose of financing state education projects." State education projects include projects for "instructional training and the acquisition [of] software and related technology.").
government has, as noted previously, allocated over eight billion dollars to states for educational technology.

A second trend is the creation of state educational technology commissions, councils, offices, or departments whose purpose is to help public educators integrate technology into the curriculum. South Dakota established an Office of Educational Technology in the state Department of Education whose responsibilities include “researching, analyzing, procuring, and distributing programs and methods using educational technology in South Dakota K-12 schools and classrooms.”

The State of Delaware created the Delaware Center for Educational Technology. Lawmakers specifically intended the Center to be devoid of bureaucracies and desired the Center to “concentrate on the deployment of technology at the school level in a way that will be of maximum effect in improving teaching and learning in Delaware schools.”

Nevada lawmakers created a commission to “establish a plan for the use of educational technology in the public schools of this state.”

North Carolina formed a group to “propose a state school technology plan for improving student performance in the public schools through the use of learning and instructional management technologies.”

Many other states have developed these kinds of offices and commissions to help integrate technology into the main-

20. N.C. Gen. Stat. § 115C-102.6 (2000). See also 105 Ill. Comp. Stat. Ann. § 5/2-3.62 (West 2000) (“A regional network of educational service centers shall be established by the State Board of Education...Services to be made available by such centers shall include the planning, implementation and evaluation of...computer technology education including the evaluation, use and application of state-of-the-art technology in computer software.”); Ohio Rev. Code Ann. § 3301.80 (Anderson 2000) (Ohio Legislature created the Ohio SchoolNet commission that will “administer programs to provide financial and other assistance to school districts and other educational institutions for the acquisition and utilization of educational technology.”); N.Y. Educ. Laws § 316 (McKinney 2000) (“The commissioner shall...provide funds to school districts and boards of cooperative educational services to plan, establish and operate teacher resource and computer training centers.”); Cal. Educ. Code § 51871.3 (West 2001) (“The Commission on Technology in Learning is hereby established to make policy recommendations to the State Board of Education in areas including, but not necessarily limited to...statewide planning for technology, including a statewide master plan for use of education technology in California's elementary and secondary instructional program.”); Idaho Code § 33-4805 (2000) (Idaho Educational Technology Council shall “develop and maintain a statewide education technology plan to provide seamless education in Idaho...make recommendations to the state board of education on educational technology.”).
stream curricula.

A third emerging trend concerns professional development. Several states have statutes designed to help teachers receive professional development training in technology. Some states, such as Indiana and California, simply make grants available for schools to receive "professional development related to technology."²¹ Other states, such as Oklahoma, hire personnel to "develop and offer professional development [for] the use of technology in the classroom."²² Virginia lawmakers enacted legislation requiring each local school district to provide "a program of professional development in educational technology for all instructional personnel which is designed to facilitate integration of computer skills and related technology into the curricula. . ."²³ The State of New York has created teacher resource and computer training centers for every large public school district in the state. These resource and training centers "provide demonstration and training sites where teachers are trained, specifically in the use of computers as teaching aids; the criteria for school acquisition and use of computer equipment and software; and the evaluation of computer-related materials."²⁴ These centers also "retrain teachers and other educational personnel to become better qualified to teach in subject areas necessary to prepare students for the developing high technology era, in the disciplines of mathematics, science and computer technology."²⁵ Alabama lawmakers have created a teacher education scholarship loan program to provide certified teachers with funds to receive education and training "in the use of integrating technology skills in the curriculum."²⁶ All of these

²¹. Ind. Code Ann. § 20-10.1-25.3-10 (LEXIS L. Publg. 2000) ("A school corporation must use a grant received under this chapter to implement all or part of the school corporation's technology plan by funding uses that include. . . professional development related to technology."); Cal. Educ. Code § 44731 (West 2001) (Under the Education Technology Staff Development Program, "the funds received pursuant to this chapter shall be expended by the eligible schools for the purpose of providing in-service training to their school site administrators, appropriate instructional classified employees, and certificated employees who provide direct instructional services to pupils in grades 4 to 8, inclusive, in the use of education technology to support the daily instruction of pupils and the record keeping necessary to support that instruction.").

²⁵. Id.

statutes show the importance states are placing now on teacher training in technology.

The fourth trend is teacher certification or licensure. Of the fifty U.S. states, nine (California, Colorado, Connecticut, Georgia, Florida, Nebraska, Ohio, Virginia, and West Virginia) require teachers to be trained in integrating technology with instruction to obtain certification or licensure. The Colorado legislature obligated its state board of education to adopt teacher licensure standards beginning July 1, 2000. These standards require prospective teachers to demonstrate the ability to “integrate technology into instruction at the grade level of which the teacher expects to be endorsed” before receiving a teaching license.27 The State of Connecticut, as of July 1, 1998, requires teachers who wish to be certified to complete “a computer and other information technology skills component... as applied to student learning and classroom instruction, communications, and data management.”28 The State of Virginia, after July 1, 2003, will require teachers seeking licensure or license renewal to “demonstrate proficiency in the use of educational technology for instruction.”29 The State of California, as of January 1, 2000, requires teachers who seek preliminary or single subject teaching credentials to demonstrate “basic competency in the use of computers in the classroom... [by the] completion of a commission-approved program or course [or by the]... passage of an assessment that is developed, approved,
and administered by the commission."³⁰

The legislative bodies of Georgia, Florida, Nebraska, and Ohio give specific instructions to colleges and universities that have teacher preparation programs. Georgia lawmakers mandate universities and colleges to "require students in [teacher preparation] programs to be proficient in computer and other instructional technology applications and skills including ... integration [of technology] with teaching and curriculum ... "³¹

A Georgia statute also indicates that there will be a test administered to students enrolled in teacher preparation programs to assess competency in technology and instruction.³² For those Georgia teachers seeking a renewable certificate, a statute requires applicants to demonstrate satisfactory proficiency on a computer skills competency test.³³ Florida states that beginning July 1, 2000, teacher preparation programs must adequately prepare elementary, middle, and high school teachers to "use technology at the appropriate grade level" to receive continued approval.³⁴ Nebraska lawmakers stipulated that by September 1, 1998, all teacher training programs "develop and integrate into their curriculum academic programs which train future teachers in an understanding of the latest information and communication technologies ... and in the appropriate uses of such information and technologies in the instructional process."³⁵ The State of Ohio requires institutions that train teachers to "ensure that graduates of such courses of study are skilled at integrating educational technology in the instruction of children ..."³⁶ Graduates may demonstrate proficiency by completing a course that teaches these skills or in another manner "prescribed by the department of education."³⁷ These statutes show that states want to ensure that teacher competence in technology is standardized and have implemented these certification and licensure programs to guarantee a minimum level of competence.

Two states, Florida and West Virginia, have mandated that

³² Id.
³⁷ Id.
teachers demonstrate proficiency at integrating technology with instruction through formal teacher assessments. Florida requires superintendents of each local school district to establish procedures for assessing the performance of teachers and administrators. These procedures must include "the use of technology in the classroom." West Virginia has a fairly elaborate process for certifying teachers who choose to become certified through alternative teacher certification programs (programs other than the regular university or college programs). Before teachers are given full responsibility for a classroom, they must complete a full-time seminar/practicum of twenty to thirty days. A statute stipulates that the seminar/practicum "shall provide formal instruction in the use of educational computers and other technology." After an alternative-program teacher receives full responsibility of a classroom, the teacher is visited and critiqued at least once a week and is formally evaluated at the end of five and ten weeks, presumably on what the teacher learns in the seminar/practicum. During this probationary period, the teacher continues to receive instruction in the "use of educational computers and other technology."

From the preceding statutory analysis, it is clear that state lawmakers believe instructional technology is an important component of educating children. Many states have gone to great lengths to impact educational reform and to prepare students to enter the technological-driven society of the twenty-first century. However, the analysis also demonstrates that on the whole most states have failed to carve out a role for school administrators. In fact, only six states even mention the word "administrator" in a statute addressing education and technology. That role is typically restricted to membership on an ad-

40. Id.
visory committee or council consisting of fourteen or more persons. In addition, in forming these councils with greatly de-fused administrative representation, few states require the members to have any computer or technology training.

IV. ADMINISTRATOR ACCOUNTABILITY

It is ironic that state lawmakers, for the most part, have not determined a role for administrators in educational technology. This irony is even more pronounced since administrators are ultimately held responsible for the teaching and learning process that occurs in schools. Relevant statutory language demonstrates that legislators recognize that educational technology is an important element of educating public school students for the 21st century. As such, it seems plausible that in the future, an administrator could be held professionally responsible for failing to successfully integrate the new communications media into the curriculum. Clearly, this is the trend in American public school education; school administrators are the country’s academic barometer, and the mercurial measurement of student success or failure will determine just how much such professionals will be held accountable. Said differently, the “accountability” or “reconstitution” movements in the states permit school officials to terminate administrators who do not demonstrate student achievement or who do not meet the objectives of a particular reform movement (such as in instructional technology).

The Commonwealth of Massachusetts has enacted laws consistent with the educational accountability movement. For example, a principal was terminated for failing to improve stu-

42. The “accountability” movement sets achievement goals, typically for a state system of public education, usually based on student performance on standardized tests, and ties success or failure to administrator retention, demotion, or discharge. See e.g., Tex. Educ. Code Ann. § 39.131 (West 2000); Edgewood Independent Sch. Dist. v. Menof, 893 S.W. 2d 450 (Tex. 1995).

dent achievement at a high school. His school was required to show student achievement in mathematics, reading, citizenship, and technology. The principal argued that the terms, "just cause" and "good cause" in his employment contract were synonymous, and hence, under the "good cause" legal doctrine he could only be discharged for "substantial misconduct which adversely affects the public interest by impairing the efficiency of the public service." School officials in the case argued that state law, modified to address accountability in schools, distinguished the two terms, and "good" cause permitted the dismissal of principals for any reason that is not "arbitrary, irrational, unreasonable, or irrelevant to the . . . task of building up and maintaining an efficient school system." A state appeals court agreed with the school officials and overturned an arbitrator’s finding of a parallel between the terms. In its finding, the court concentrated on the state's major objective in fashioning new law, promoting public schools' delivery of high quality education to all students. This required school principals to create a process emphasizing the achievement of established performance objectives for all students and creating a mechanism for monitoring progress toward those goals. The new law also established sanctions, one of which was dismissal, for administrators who could not demonstrate such achievement. Therefore, according to the court, principals were "at-will" employees under contract to deliver on student progress. Accordingly, the court overruled the arbitrator and agreed with the school district that the principal failed to take into account the best interests of students relative to performance standards and this was appropriate good cause for his termination.

The "accountability movement" has created experimentation in site-based management where teaching staff, business

45. Id. at 6.
46. Id. at 7.
47. States sometimes integrate accountability activity with issues involving finance equity and whether students are receiving the caliber of education defined by law. A North Carolina statute, N.C. Gen. Stat. § 115C-325 (West 2000), guarantees at-risk students the opportunity to receive a sound basic education on a level with those children that are not at-risk. In a recent decision, a state appeals court interpreted the law to also mean that a school board could dismiss a principal in a low performing school with minimal due process. See Hoke County Board of Education v. State, 2000 WL 1639686 (N.C. Super).
48. Site-based management involves decision making by the principal, teachers, and non-management constituent groups of a school where all parties collectively make
persons, and community members are given responsibility for working with the school principal in managing a local school building. The assumption is that shared decision-making will improve student achievement and facilitate better decision-making on pedagogical matters.49 The movement came about most recently because of criticism that principals are "bureaucrats," out of touch with their constituencies and insensitive to the achievement concerns of students. The movement has been tied to student achievement and school district accountability. The U.S. Court of Appeals for the Seventh Circuit has ruled that a principal suffered no property right or liberty interest violation when a local school council, in the name of shared decision-making, student achievement, and educational reform, attempted to remove her from office.50 The symbiosis of accountability and site-based management in Illinois is codified in amendments to the Illinois School Code mandating ongoing academic improvement through the establishment of local academic councils and demonstration by school principals of strong academic success in students. The mission of the state law is to "implement a comprehensive system of review, evaluation, and analysis of school performance, and to provide a system of intervention for non-performing schools."51 The Illinois Code also calls for the removal of the school principal if sufficient progress among students is not achieved.

Recently, a local Illinois school council expressed concerns about the success of a school principal’s school improvement plan, particularly that portion on how to raise student skill levels in computers and technology through testing assessments.52 The school code provides for the removal and replacement of school principals who fail to make adequate progress in correct-

50 Id.
52 Newton v. Chicago Sch. Bd. Reform Bd. of Trustees, 2000 WL 1367612 (N.D. Ill).
ing academic deficiencies among students. Upon removal from his position, the principal alleged a deprivation of a property interest and the denial of due process of law. Focusing on the fact that amendments to the state school code emphasizing student achievement simultaneously reduced administrative due process protection, a state appeals court stated that the principal had sufficient notice of his employment protections. As such, the principal had to overcome a presumption of good faith, honesty, and integrity on the part of the local school council and the larger city school board. To overcome this presumption, the court stated that a school administrator had to produce substantial evidence of actual or potential bias, such as evidence of a pecuniary interest in the proceeding, personal animosity, or actual prejudice. The court found no such bias; instead, there was evidence that the council had serious concerns about student achievement, and it was reasonable for the school district to remove him.

In Donato v. Planview-Old Bethpage Central School District, the U.S. Court of Appeals for the Second Circuit indicated that administrators may be terminated for failing to uphold school district expectations in regards to curriculum and instruction. A probationary assistant principal was terminated for, among other things, “failure to provide adequate instructional supervision.” The principal claimed that the school district “deprived her of property and liberty interest without due process of law.” The court held the administrator had no legitimate expectation for employment outside of a very limited contract, and her termination was not motivated by reasons considered to be unconstitutional (e.g. racial animus or religious bigotry). The court did find, however, that she was deprived of a liberty interest without due process because the Board made “stigmatizing allegations in the course of dismissing an employee.” The court also indicated, however, that had the Board “explain[ed] its reasons for termination...without damaging the principal’s professional reputation to such an extent as to severely impede her ability to continue in the education field in a supervisory capacity,” the Board would not have

54. 96 F. 3d 623 (2d Cir. 1996).
55. Id. at 627.
56. Id. at 628.
57. Id. at 633.
deprived [the principal] of a liberty interest and could have legally terminated her for the listed reasons.58

The above rendition of case law, of course, represents no revolutionary analysis; protections for the position of public school administrator have always been, at best, tenuous. Although there are variations between states, superintendents and principals typically have no tenure privileges (unlike the position of teacher), and their positions carry the "least statutory protection with regard to employment . . . [and the least] procedural due process [protection] in the course of attempts to terminate or reclassify them."59 Generally, such administrators have limited constitutional due process rights; most state statutes stipulate that individuals have no property rights in such a position.60 For example, in Illinois such contracts are limited to a maximum of four years with no opportunity to return to a formerly held teaching position. Hence, teachers who elect to become principals not only serve in an "at-will capacity," but also waive the protection of teacher tenure. Arizona limits the term of employment for principals and superintendents to three years and requires performance evaluations.61 The Texas Educational Code stipulates that all administrators, from superintendent through assistant principal, must receive performance contracts that permit a school district to fire without due process if students do not perform at a prescribed rate.62 Although there are variations in the way courts determine protections of administrators and their employment protections, most judicial opinions have determined that public education is controlled by state and local authorities; i.e., the state legislature and the local boards of education. Courts do not typically intervene in the daily conflicts that arise in school systems, including those involving employment brought by school administrators. This is the case even if the board acts for political or personal reasons as motive is typically not considered unless there is an abuse of discretion, or the school board acts arbi-

58 Id. at 632-33.

60 There are nineteen states that do provide for limited due process for principals. See National Association of Secondary Principals, Administrative Tenure Statutes and Other Legislative Protection of Position, 1 (1990).

trarily or capriciously.63

Nonetheless, state and local lawmakers, under the banner of accountability, have enacted legislation which, at least in part, lists educational technology as an important component to public education curriculum. As a result, it is very likely that local school districts across the nation feel acute pressure to develop sound educational technology programs in their schools. The cases herein indicate that administrators may be legally terminated for failing to uphold expectations in regards to curriculum and instruction. Therefore, if a school administrator does not develop a sound instructional technology program in his or her school, this may very well serve as legal grounds for termination.

V. ADMINISTRATOR TRAINING AND POLICY PARTICIPATION

Although administrators have previously been required to have little or no technology training, there is an increasing recognition that administrators are being held accountable for the success of technology programs in their schools, and that administrators are now necessarily playing a crucial role in crafting curricular strategies in the information age. The Collaborative for Technology Standards for Administrators (TSSA Collaborative) has defined standards that "identify a common focus for the role of leadership in enhancing learning and school operations through the use of technology [and] address leadership with the ultimate purpose of preparing students for their futures."64 The standards seek to create a place for school leadership in the development and integration of technology in school curricula. The underlying theme of this effort is that school administrators must be trained in instructional technology so as to aid teachers and students to effectively use tech-

\begin{itemize}
 \item Sperry, \textit{supra} n. 48, at 43.
 \item TSSA Collaborative, \textit{supra} n. 1 (Members of the TSSA Collaborative include: the American Association of School Administrators, the Association of Education Services Agencies, the National Association of Secondary School Principals, the National Association of Elementary School Principals, the National School Board Association, International Society for Technology in Education, the Consortium for School Networking, the North Central Regional Technology Consortium @ North Central Regional Education Laboratory, Southern Regional Education Board, the Kentucky Department of Education, the Mississippi Department of Education, University of North Carolina Principals' Executive Program, and Western Michigan University College of Education.)
\end{itemize}
technology in their daily academic lives. Components of the draft policies include (1) leadership and vision—administrators foster a vision of technology integration in the school’s curriculum; (2) learning and teaching—educational leaders create a curricular design in instructional technology; (3) productivity and professional practice—leaders apply technology to professional practice; (4) support, management, and operations—administrators give direction in integrating technology in administrative systems; (5) assessment and evaluation—principals and others evaluate school technology programs at the local level; and (6) social, legal, and ethical issues—administrators understand the legal and ethical concerns of technology practice. Each of the proposed six domains contains performance indicators, which the reader may wish to examine in more detail.65

Like so many other consortium approaches, as well as the state and local legislative initiatives cited above, the TSSA Collaboration neither lists nor proposes a role of any sort for policy participation by school administrators beyond having them assess the policies at the local level. Participation by administrators is limited to the exploration of basic computer applications such as word processing, spreadsheets, email, and exploration into the Internet. TSSA, at best, advocates that school administrators assume leadership roles, manifested through a basic understanding of instructional applications and the potential of technology, to enhance the teaching and learning process. Hence, the said role is limited to compliance or the implementation of policy. School reform, even for the commercial influence, therefore, represents a series of top-down measures. Policy in this arena, consistent with much of education policy, is something that someone else determines and passes on to the educator. The administrator must act consistently with the policy and carry out its directives or suffer the consequences of possible suspension or termination.

Administrators themselves have adopted this philosophy, often without question. In a recent study school principals were asked to rank preferred participation in the technology enterprise. The statistics are consistent with perception: sixty-eight percent of those in the study ranked personal use of computers as their most important function in technology; twenty-eight

65. Id.
percent ranked a preferred function as "becoming a technology leader;" only four percent ranked "becoming aware of policy issues as important." One notable finding of the study was that of the items used to question principals about technology, the one yielding the lowest mean, i.e., the question principals found to be the least important, was "Participating in the development of your school's Internet Acceptable Use Policy." It is important that school administrators realize the important role they could play in not only implementing policy but helping to design it.

The authors of the TSSA instruct that school administrators should be trained in intervention in technology planning, hands-on computer training, and leadership styles in the schools and classrooms. This is necessary, but insufficient. A seventh domain must be added to the TSSA framework: Educational leaders must take an active role in the creation, implementation, and modification of local and state policy relating to technology in public education. For administrators to meet this standard, government leaders must allow them to take a role in the creation and modification of policy.

There is a need, both locally and statewide, to revise the policy approach such that colleges and universities provide courses, workshops, and training programs for administrators and potential administrators on how to be directly involved in policy formation, or, at least to influence educational policy making. The inclusion of school administrators in the process would bring very important perspectives to the review and evaluation of policy: "Precisely because they are involved in the educational enterprise, educators throughout the system are in a special position to grasp the strengths and shortcomings of new policies and guidelines;" especially if they are to assume a leadership role in the fostering of technology in the curricula. Moreover, the presence of administrators in policy formation and analysis would foster greater cooperation in the technology

enterprise, giving a greater possibility of success in the implementation of academic programs.

As previously mentioned, a handful of states already allow school administrators to participate in instructional technology committees. This practice should be expanded. Though it is impractical for large numbers of administrators to take part in state or national committees, perhaps administrators should be encouraged to meet and discuss their views on instructional technology and select a small group to represent them on a committee. Administrators who deal with curricular and instructional issues on a daily basis may be able to offer insight into how to best spend educational technology funds, suggest practical ideas for professional development in technology, and give advice on how to train prospective teachers to be adept in instructional technology.

Professional educators should be at the forefront of educational policy-making. Administrators could provide crucial feedback to state and national policymakers. Policy made at a distance from those "who must implement it and from those who must live it rarely, if ever, achieves the objectives of the policy." Policy formulated outside of education by legislators and executives (through legislation and state or provincial mandates) tends to be blunted if there is no involvement of the educational professionals at each level. Administrators are expected to implement government policy. They inform and instruct teachers, supervise the implementation process, and listen to responses from students, teachers, parents, and community members. As legislatures seek to improve and modify instructional technology policy, it is important that they listen to those who observed the implementation process firsthand. Effective policies are those which engage school administrators. Administrators must be consulted relative to purpose, integration into existing operations, and procedure.

While it is true that state legislatures should facilitate administrators' involvement, it should be emphasized that administrators have a professional obligation to help shape educational policy by seeking to become part of the policy-making process. Without engaging in this policy-making role, educators

69. Id.
abdicate leadership to others. This is anathema to the education professional, particularly those trained to be administrators.

VI. ENLARGING THE VISION AND EXPANDING THE TECHNOLOGY-RELATED EDUCATION OF ADMINISTRATORS

School administrators at all levels must be involved in shaping educational policies relating to instructional technology. In order for this to occur, there must be a change in the way that this group is educated. A large segment of the educational administration population must be taught to use a conceptual research model of instructional technology in addition to learning the nuts and bolts of a particular discipline. Education in certain areas is important in the preparation of educators to pursue policy-making roles. Such areas include recognizing a policy situation and discerning policy from politics: matters of strategy, technique, or tactics. Policy, by design, is intended to have long-term effects. Policies need to include recognition of the legal context. All policy has its roots in legal structure. Often, for example, policy is derived from some social concern, in this instance, the explosion of technology innovation. This activity has resulted in proposed controls over the Internet and computer use in the form of common law and legislation. This legislation is often challenged in court and leads to more legislation, refined legislation in the form of case law. School administrators must be exposed to the legislative process.

Other important content areas include training that goes beyond mere satisfaction of surface goals and objectives. Training programs for administrators, particularly in instructional technology, should examine long-term consequences of decision-making. This layered model seeks to determine not only whether goals have been met, but also whether there are outcomes and consequences that are different from those planned. This latter issue seeks to show differential impacts, i.e., how various constituencies are affected by administrator decision-making; for example, how will an administrator fair on the accountability guillotine if the budget is used to purchase sophis-

ticated computers without the requisite training in either teachers or students? 71

VII. CONCLUSION

The thesis of this research is that school administrators should be involved at all levels of the policy enterprise, since it is they who will be ultimately responsible for the implementation and success of any school-related technology endeavor. A process must be established such that a representative group of administrators is involved in the reviewing and reporting of technology policy to those whose job it is to make the policy. Professional preparation programs, including formal degree coursework as well as in-service seminars, need to develop the perspectives and skills necessary for this bottom-up reporting so that it can occur accurately and efficiently. Such participation by school administrators in this enterprise will not ameliorate all of the problems schools will face with the new technology. However, the exclusion of administrators, benign or intended, will certainly prolong current ills. The dilemmas faced by administrators are ones of representation of constituencies and sanctions for ill-timed or misplaced decision-making. State lawmakers, executive school personnel, and the commercial organizations that control educational accreditation programs can provide enlightenment and reduce administrative turnover by including in the policy paradigm the front line troops whose job it is to achieve proposed policy goals and objectives: the school administrators.